New Product
DurA Cycle A50
Driving innovation and performance while
reducing cost of goods.
DurA Cycle A50
Driving innovation and performance while
reducing cost of goods.
En tant que leader mondial de la technologie des résines, nous développons et fabriquons de petites billes qui sont utilisées dans les industries les plus réglementées au monde pour séparer, éliminer ou récupérer des éléments et composés très spécifiques.
Apprendre encore plusAvec 40 ans d'expertise en fabrication et 30 ans d'expérience en réglementation, nous fournissons des technologies de séparation, de purification et d'extraction de pointe pour soutenir les applications de chromatographie et de biocatalyse dans les soins de santé et les sciences de la vie.
(Pages Sciences de la vie actuellement en anglais uniquement)
Nous sommes le leader mondial des technologies de séparation, de purification et d'extraction à base de résine, qui fournissent des solutions durables pour notre environnement, nos entreprises et nos soins de santé.
Learn MoreNos équipes de support technique et de service toujours prêtes font un pas supplémentaire pour devenir votre ressource la plus fiable. Nous sommes là pour vous.
Purolite will help you meet and exceed per and poly- fluoroalkyl substances (PFAS) global requirements to provide compliant drinking water and protect the environment. Purolite was one of the first to enter this market with an unwavering commitment to the effective treatment of water for PFAS forever chemicals. Purolite Purofine® PFA694 is an accepted and effective treatment technology for treating drinking water and environmental remediation worldwide. To date, Purolite has treated 11B+ gallons of PFAS water.
Purolite technical experts can provide design recommendations that offer:
Purolite's PFAS Resins
Purolite's Purofine® PFA694 family of products provides high selectivity for poly- and perfluoroalkyl substances (PFAS). This single-use, uniform particle-size resin incorporates dual removal mechanisms of ion exchange and adsorption technology for maximum uptake of PFAS.
Water treated with this resin is proven to consistently achieve simultaneous removal of both short- and long-chain PFAS—including but not limited to PFOA, PFOS, PFNA, GenX, PFHxS, and PFBS— to meet and exceed regulatory levels.
As a single-use resin, there are no regenerant chemicals. PFAS are effectively captured and concentrated on the ion exchange bead. Exhausted resin can be disposed of through landfill or destructive methods, like incineration, where the compounds are finally entirely broken down, preventing re-introduction into the environment. Many waste-to-energy disposal facilities recapture the energy in the organic bonds of the resin during the destruction of the resin, thereby enhancing the sustainability of the treatment.
Background water chemistry drives the performance of the PFA694 products. Purolite provides proprietary throughput modeling based on a balanced water chemistry analysis.
Advantages of Ion Exchange vs. GAC for PFAS Treatment
Granular Activated Carbon (GAC) has been used traditionally to treat PFAS. As more sites evaluate treatment technologies, ion exchange has proven to be consistently less expensive from an operational and capital standpoint. This is due to PFA694 providing higher selectivity for more regulated PFAS compounds than GAC, which translates to longer media life, fewer changeouts, and fewer disruptions to the process Learn More
Q: What are PFAS?
PFAS, also known as “forever chemicals,” are a group of man-made chemicals that includes perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), GenX, ADONA, and many other chemicals. There are thousands of known species of PFAS. PFAS have been manufactured and used in various industries around the globe, including in the United States, since the 1940s. PFOA and PFOS have been the most extensively produced and studied of these chemicals. Both are being phased out of manufacturing in the US at this time.
Q: How does PFAS get into our water supplies?
Aqueous film-forming foam (AFFF), or firefighting foam, has been a major source of PFAS contamination since its use in the late 1960s to extinguish petroleum fires at airfields, oil refineries, and military installations. Other important PFAS sources include the manufacture of consumer and industrial products such as Teflon-coated utensils, carpets, pizza boxes, popcorn bags, chrome plating, pesticides, textiles, semiconductors, and the manufacture of wires and cables. After decades of disposing of PFAS-containing items in landfills, leachate sent to wastewater treatment plants (WWTP) has resulted in additional contamination of WWTP effluents and biosolids that are subsequently used as fertilizer.
Q: What are the current regulations for PFAS in drinking water?
Health advisory levels vary throughout the world. However, in March 2023, the US EPA issued a proposed maximum contaminant level (MCL) of 4 parts per trillion (ppt) for PFOS and PFOA, along with a hazard index for several other PFAS, including PFBS, PFHxS, PFNA, and GenX. Many states in the US have issued health guidelines more stringent than the federal level.
Q: How can PFAS be removed from water?
According to the EPA’s Drinking Water Treatability Database, processes such as granular activated carbon, membrane separation, ion exchange, and powdered activated carbon are standard treatment technologies for drinking water treatment for PFAS removal. Aside from these technologies, PFAS removal is resistant to many, if not most, water treatment processes, while other technologies may increase their concentrations.
Q: What is the history of PFAS?
What other names are used to refer to PFAS?
PFAS chemicals, PFCs, and fluorocarbon chemicals, are additional names used for the category of PFAS or its subsets. A listing of the more commonly found PFAS includes:
Other common terms used to describe PFAS include “long-chain,” a sulfonic-based PFAS with six or more carbons in the polymer chain (i.e., PFOS and PFHxS), and carboxylic acid-based PFAS with eight or more carbons in their polymer chain (i.e., PFOA and PFNA). “Short-chain” PFAS refers to those compounds having fewer carbons than the “long-chain” definitions used above (i.e., PFBS and PFBA).
Elimination des perfluoroalkyles
Purolite.com uses cookies to give you the best possible experience. By using Purolite.com, you consent to our use of cookies. If you do not wish to receive our cookies, adjust your browser settings. Read our Cookies Policy to learn more.